
Radix Sort
The fastest way to sort numbers

What I wanted to show
• “I wrote a faster sorting algorithm”

• https://probablydance.com/2016/12/27/i-wrote-a-
faster-sorting-algorithm/

• Claims he can sort twice as fast as sort

• It seems to be a general purpose Radix sort

• I did not have time to explore further with all the
time constraints

https://probablydance.com/2016/12/27/i-wrote-a-faster-sorting-algorithm/
https://probablydance.com/2016/12/27/i-wrote-a-faster-sorting-algorithm/

Instead
• I will show you an efficient Radix sort called

• American Flag Sort

• Which is the basis of his algorithm

• Sorts numbers or keys that are numbers

• It is a non comparative sort, that is it does not compare
elements like quick, heap, insertion, merge or the
infamous bubble sorts.

• It is straight linear O(n + k)

 31 sub script {
 32 my (@input) = @_;
 33
 34 my $len = @input;
 35
 36 # correlate to the radix
 37 my $max = 0;
 38 foreach my $item (@input) {
 39 $max = $item if $item > $max;
 40 }
 41 $len = $max if ($max > $len);
 42
 43 my @index = (0 .. $len);
 44
 45 print_array ("INDEX", -1, @index);
 46 print_array ("INPUT", -1, @input);
 47
 48 my @counts;
 49 my @offsets;
 50 my @outputs;
 51
 52 foreach my $i (@index) {
 53 $counts [$i] = 0;
 54 $offsets [$i] = 0;
 55 }
 56
 57 foreach my $i (0 .. @input - 1) {
 58 $outputs [$i] = 0;
 59 }
 60
 61 # update the counts, i.e. count how many times for each input
 62 foreach my $input (@input) {
 63 $counts[$input] ++;
 64 }
 65
 66 # create offsets array
 67 foreach my $i (1 .. $len - 1) {
 68 my $sum = 0;
 69 foreach my $j (0 .. $i - 1) {
 70 $sum += $counts[$j];
 71 }
 72
 73 $offsets [$i] = $sum;
 74 }

We need a number of buckets at least
the size of our input, but also at least
the size of our largest integer.

3 more sets of buckets, @counts,
@offsets and finally @outputs,
initialize to all zeros

Not intended to be idiomatically correct, organized to discuss algorithm
I would have written this in C or C++ but decided to make it Perly

This trick here allows for efficient
layout. Some Radix sorts make each
bucket a linked list of duplicate keys.
So add “counts” to “offsets” we have
the location of that key in the output.

 76 print_array ("COUNTS", -1, @counts);
 77 print_array ("OFFSETS", -1, @offsets);
 78
 79 # now proceed
 80
 81 print "\n";
 82 foreach my $i (0 .. @input - 1) {
 83 print "\n";
 84 print '-'x78 . "\n";
 85
 86 my $item = $input[$i];
 87 my $idx = $item - 1;
 88
 89 print "OPERATION BEFORE INDEX $i :$item:\n";
 90 print_array ("INDEX", $i, @index);
 91 print_array ("INPUT", $i, @input);
 92 print_array ("COUNTS", $idx, @counts);
 93 print_array ("OFFSETS", $idx, @offsets);
 94 print_array ("OUTPUTS", -1, @outputs);
 95
 96 # wrote out in excrutiating clarity to explain
 97 my $place_idx = $counts [$idx];
 98 $counts [$idx]++;
 99 $place_idx += $offsets [$idx];
100
101 printf "\n ITEM %d IDX %d PLACE %d\n\n", $item, $idx, $place_idx;
102
103 $outputs [$place_idx] = $item;
104
105 print "OPERATION AFTER :$item:\n";
106 print_array ("INDEX", $i, @index);
107 print_array ("INPUT", $i, @input);
108 print_array ("COUNTS", $idx, @counts);
109 print_array ("OFFSETS", $idx, @offsets);
110 print_array ("OUTPUTS", $place_idx, @outputs);
111 }
112
113 return 0;

Now Sort Damn it.

Here is the magic, add the
counts to the offsets and you
have the location in the output
array. Then increment the
counts.

I will illustrate now by running it.

….

print_array is for the pseudo
animation

