
Work Queueing with Redis.pm

B. Estrade
http://houston.pm.org/

August 8th, 2013

http://houston.pm.org/
http://houston.pm.org/

What is Redis?

● a keyed (shared) data structures server

● supports its own protocol

● supports: scalar, hash, list, set

● “in memory” + optional bin logging

● “single threaded, except when it’s not”

● publish/subscribe “channels”

Demo requires set up time if you wish to run
it yourself.

Now’s a good time to start the Vagrant
process if you have not yet done so.

https://github.com/estrabd/houston-pm-redis-talk

https://github.com/estrabd/houston-pm-redis-talk
https://github.com/estrabd/houston-pm-redis-talk

Redis.pm

● “official” Redis client for Perl

● wrapper around Redis protocol, methods
use Redis;
my $redis = Redis->new(server =>
'192.168.2.3');
$redis->ping;

vagrant@precise64:/vagrant$ telnet 192.168.3.2 6379
Trying 192.168.3.2...
Connected to 192.168.3.2.
Escape character is '^]'.
ping
+PONG

Perl Script

Telnet Session

A Work Queue (FIFO)

What is Work Queueing? Why?

● a method of distributing tasks to a pool of
worker processes

● useful for massively scaling web applications

● decouples requests from resource intensive
interactions (e.g., with a DB)

● more secure, workers can be in a private net

● # of workers can be tuned based on load

Redis as a Queue?

● use the “list” data structure

● non-blocking:
○ lpush, rpush, lpop, rpop, rpoplpush*

● blocking
○ blpop, brpop, brpoplpush*

● necessarily implements atomic pop’ing

● other structures can be used for meta data
* provides for “reliable” queues

Why Not MySQL as a Queue

● list operations must be emulated

● inefficient table locking req’d for atomic pops

Why Not Memcached as Queue

● federation would be a nice feature of a
queue

● but, memcached supports only scalar
key/val

● back to implementing atomic pops (idk
how?)

● MemcachedQ, based on MemcachedBD
exists, but languishing

Other options

● beanstalkd - not mature, not stable enough

● RabbitMQ - overkill (but not for HA
messaging?)

● NoSQL option? Not sure.

Simple Queue Client using Redis.pm

● submit_task
● get_task
● bget_task

Supporting hooks for serialization/deserialization:

● _encode_task
● _decode_task

Task.pm

● send/receive blessed Task references

● fields: type ($pkg), id, payload (‘HASH’)

● Sending:
○ serialize blessed ref (encode as JSON)
○ lpush string onto Redis list

● Receiving
○ pop off of list, parse decode with JSON::XS
○ re-bless with $task->{type}

Ping Pong

● Synchronize

● Ponger waits for Ping

● Pinger sends Ping, waits for ACK via Pong

● Repeat in turn until $rounds complete

Ping Pong

MxN Producer-Consumer, 1 Queue

● M Producers

● N Consumers

● Producers “fire and forget” - asynchronous
task submit

● Consumers pull from Queue in first come
first serve order

MxN Producer-Consumer, 1 Queue

Sync’d MxN Produce-Consume

● M Producers

● N Consumers

● Producer blocks on submit until it gets a
response from whichever Consumer got it

● Requires use of “private” queues for ACKs

Sync’d MxN Produce-Consume

Other Patterns

● Scaling out synchronous produce/consume

○ M producers, N consumers, P queues
○ best implemented with forking consumers,
○ with each child watching a different queue

● Circuitous messaging and routing

○ tasks beget other tasks to other consumers
○ chain reaction like
○ heavy use of private queus
○ useful for something?

Redis Failover Options?

● Master/Slave replication via binary log

● Redis HA Cluster in development

● Craigslist uses sharding & “federated” Redis,
which is not supported natively (here & here)

● Could use a pool of Redis instances/queues

○ Sharing/Federation is often overkill for just queuing
○ Producers will try to submit until successful
○ Available queue assumed to have at least one consumer
○ Also implement a “reliable” protocol (using ACKs, etc)

https://github.com/craigslist/perl-AnyEvent-Redis-Federated
http://blog.zawodny.com/2011/02/26/redis-sharding-at-craigslist/

Note on General Messaging

● Redis is not the best foundation for “reliable”
2-way messaging

● Redis “cluster”, sharding/federating is best
here for reliability

● RabbitMQ seems to a fine, if heavy solution
for this

● ...which segues nicely into Failover

Tips

● treat Redis instances as ephemeral

● turn off binary logging for high throughput

● not convinced it’s a good durable data store

● Redis seems highly stable/reliable

● 1 machine can support many Redis daemons

● it’s smart to wrap blocking calls with alarm

Demo

● Reproducible using Vagrant manifest (KMA,
Murphy! ;)

● Ping Pong

● Asynchronous M Producer x N Consumer

● Synchronous M Producer x N Consumer

Conclusion

● Redis shines for work queueing

● Lots of potential to make w-q patterns scale

● Similarly, it can be highly available/reliable

● Open Questions -
○ leveraging other data structures for meta data
○ e.g., implement “queue” state -

■ accepting
■ draining
■ offline

Resources
● https://github.com/estrabd/houston-pm-redis-talk

● https://github.com/melo/perl-redis

● http://blog.zawodny.com/2011/02/26/redis-sharding-at-craigslist/

● Vagrant

● http://houston.pm.org/

● http://www.cpanel.net

https://github.com/estrabd/houston-pm-redis-talk
https://github.com/estrabd/houston-pm-redis-talk
https://github.com/melo/perl-redis
https://github.com/melo/perl-redis
http://blog.zawodny.com/2011/02/26/redis-sharding-at-craigslist/
http://blog.zawodny.com/2011/02/26/redis-sharding-at-craigslist/
http://www.vagrantup.com/
http://www.vagrantup.com/
http://houston.pm.org/
http://houston.pm.org/
http://www.cpanel.net
http://www.cpanel.net

