
PARI/GP and Perl: Past, Present, Future

Charles Boyd

Houston Perl Mongers

March 14, 2013

PARI/GP - A Gentle Introduction

What is PARI/GP?

PARI/GP is a fast and portable computer algebra system,
primarily for use in algebraic number theory.

I PARI is a C library for fast computations.

I GP is a scripting language and interpreter for PARI
functions.

I gp is an interactive shell that provides an interface to the
PARI/GP system.

Examples of PARI/GP

I factor(2302984)

I factor(x6 � 4x3 + 7x2 � 9x+ 3)

I primes(100)

I for(i=0,10,print(fibonacci(i))

I taylor(sin(x),x)

Other uses of PARI/GP

I Fast linear algebra library for computations with vectors
and matrices.

I General-purpose mathematical functions for summations,
series, derivatives and integrals.

I Number Theoretic functions for special computations over
the ring of integers Z,the ring of univariate polynomials
over integers Z[x], p-adic number fields, finite fields, more
general number fields, Galois Theory, . . .

I Computing elliptic curves and their properties, applications
to cryptography.

Why use PARI/GP with Perl?

I To use PARI/GP for quick computation from other Perl
programs.

I Create new interfaces for computer algebra.

I For PARI developers to test new features quickly and
easily.

I For researchers to parse/verify/manipulate data before or
after evaluation by PARI/GP.

I Cryptography? (See the CPAN module for RSA encryption)

I Because we can!

What about Math::Pari?

Note on Math::Pari
The CPAN module Math::Pari satisfies the use case of writing
a GP program in Perl. This is achieved by overloading Perl’s
arithmetic operators, conversion between Perl and PARI data
structures, and importing PARI functions (as barewords) to be
used in a Perl script.

GPP - Introduction

Basic Goals
My goal is quite di↵erent from what Math::Pari achieves:

I No overloading of Perl’s operators.

I Keep the PARI stack completely separate from Perl’s stack.

I Clean and simple interface for communication between Perl
programs and PARI library.

I No (implicit) conversion of data structures, strings are the
universal language.

I Make it extremely simple to write a gp clone in Perl.

GPP - Overview

Design Principles

Our goals suggest the basic design concepts.

I Call PARI functions through a simple wrapper library that
evaluates a string and returns a string.

I Strict separation between Perl and PARI stacks.

I Make the Perl interface as simple and lean as possible, any
”heavy lifting” should be done in the C wrapper library or
by patching PARI/GP.

I Don’t reify PARI/GP - design should be general enough to
easily support inclusion of other (su�ciently wrapped)
mathematics libraries.

I Keep PARI-specific code under the GPP::Pari namespace.

GPP - Communicating with Pari

Important Structures and Functions

Pari uses the long *GEN structure as an internal representation
of all mathematical objects. The following functions are used by
GPP::Pari to communicate with libpari.

I GEN gp read str(char *in)

I char *GENtostr(GEN z)

I long typ(GEN z)

I const char *type type name(long n)

Technical note
In parisv.c, every GEN type is declared as volatile so we can
trap amd recover from errors with longjmp(jmp buf env,

long errnum).

GPP - Wrapper Library

So, I heard you like wrappers. . .

The C program parisv.c implements simple wrapper functions
to facilitate passing strings between libpari and another
program.

I char *evaluate(const char *in) - Evaluates input and
returns result.

I We also handle a pari stack structure so output from
libpari can be redirected to controlling process rather
than to STDOUT.

I char *parisv type(const char *in) - Returns the type
of resulting Pari object.

I Implementation for init(), version(), help(), quit()

functions.

I Uses swig to generate XS wrapper code for
GPP::Pari::Native module.

GPP - Perl Library

I GPP - Processes user input, handles metacommands, sends
everything else to be evaluated by GPP::Pari and pushes
results to GPP::Stack object.

I GPP::Pari - Provides high-level interface to libpari

functions via GPP::Pari::Native.

I GPP::Pari::Native - Wrapper module for Native.so
functions, generated by Swig.

I GPP::Stack - Really just an array of hashes, each element
has a key for input, output and result type.

I Native.so - Shared library linked against libpari.so that
contains symbols from parisv.c along with generated XS
wrappers from Native wrap.c.

primefactors.pl

Using GPP in a script

The examples/primefactors.pl script demonstrates using GPP

to compute prime factors of 100 randomly generated integers
0 n 1000. Runs in less than 1 second.

gpp

Using GPP to write an application

The bin/gpp script demonstrates using GPP to write an
application that provides an interactive shell to libpari.

It emulates about 90% the functionality of the gp binary
distributed with Pari/GP. Uses Term::Readline::Zoid for
readline functionality (command history and emacs-like
keybindings).

Ideas

I Graphical application using XUL::Gui. (Proof of concept
has been done, but very incomplete/buggy)

I Web application with a live script editor, pretty printing
with using libpari function GENtoTeXstr() to generate
LATEX output and MathML to render LATEX in the browser.

I Ability to convert Pari data structures into ”natural” Perl
objects.

I Extend the GP language with pure-perl features.

I Possibly create similar bindings to other mathematics
libraries.

Problems and Open Questions

I Build environment makes too many assumptions, not very
robust.

I It would be nice to turn Pari t VEC, t MAT structures into
Perl arrays (of arrays (of arrays. . .)) but turns out to be a
tricky problem to solve in full generality.

I Export libpari constants and functions in a reasonable
way.

I Need to check version of libpari on system before
compiling wrapper library, this is also not particularly easy
to do in a portable (across all unix variants) manner.

End

I GPP source code and wiki: github.com/FreeMonad/GPP

I E-mail: charles.boyd@freemonad.org

Thanks!
That’s it. Thank you for listening.

	Introduction
	GPP
	Applications

