PARI/GP and Perl: Past, Present, Future

Charles Boyd

Houston Perl Mongers

March 14, 2013



PARI/GP - A Gentle Introduction

What is PARI/GP?

PARI/GP is a fast and portable computer algebra system,
primarily for use in algebraic number theory.

» PARI is a C library for fast computations.

» GP is a scripting language and interpreter for PARI
functions.

» gp is an interactive shell that provides an interface to the
PARI/GP system.



Examples of PARI/GP

» factor(2302984)

» factor(ab — 423 + 72% — 9z + 3)

» primes(100)

» for(i=0,10,print(fibonacci(i))

» taylor(sin(x) ,x)



Other

uses of PARI/GP

Fast linear algebra library for computations with vectors
and matrices.

General-purpose mathematical functions for summations,
series, derivatives and integrals.

Number Theoretic functions for special computations over
the ring of integers Z,the ring of univariate polynomials
over integers Z|z], p-adic number fields, finite fields, more
general number fields, Galois Theory, ...

Computing elliptic curves and their properties, applications
to cryptography.



Why use PARI/GP with Perl?

» To use PARI/GP for quick computation from other Perl
programs.

» Create new interfaces for computer algebra.

» For PARI developers to test new features quickly and
easily.

» For researchers to parse/verify /manipulate data before or
after evaluation by PARI/GP.

» Cryptography? (See the CPAN module for RSA encryption)

» Because we can!



What about Math::Pari?

Note on Math::Pari

The CPAN module Math: :Pari satisfies the use case of writing
a GP program in Perl. This is achieved by overloading Perl’s
arithmetic operators, conversion between Perl and PARI data
structures, and importing PARI functions (as barewords) to be
used in a Perl script.



GPP -

Introduction

Basic Goals
My goal is quite different from what Math: :Pari achieves:

>

>

>

No overloading of Perl’s operators.
Keep the PARI stack completely separate from Perl’s stack.

Clean and simple interface for communication between Perl
programs and PARI library.

No (implicit) conversion of data structures, strings are the
universal language.

Make it extremely simple to write a gp clone in Perl.



GPP -

Overview

Design Principles

Our goals suggest the basic design concepts.

| 2

Call PARI functions through a simple wrapper library that
evaluates a string and returns a string.

Strict separation between Perl and PARI stacks.

Make the Perl interface as simple and lean as possible, any
"heavy lifting” should be done in the C wrapper library or
by patching PARI/GP.

Don’t reify PARI/GP - design should be general enough to
easily support inclusion of other (sufficiently wrapped)
mathematics libraries.

Keep PARI-specific code under the GPP: :Pari namespace.



GPP - Communicating with Pari

Important Structures and Functions

Pari uses the long *GEN structure as an internal representation
of all mathematical objects. The following functions are used by
GPP: :Pari to communicate with 1libpari.

» GEN gp_read_str(char *in)
» char *GENtostr(GEN z)
» long typ(GEN z)

» const char *type type_name(long n)

Technical note

In parisv.c, every GEN type is declared as volatile so we can
trap amd recover from errors with longjmp (jmp_buf env,
long errnum).



GPP - Wrapper Library

So, I heard you like wrappers. ..

The C program parisv.c implements simple wrapper functions
to facilitate passing strings between libpari and another
program.

» char *evaluate(const char *in) - Evaluates input and
returns result.

» We also handle a pari_stack structure so output from
libpari can be redirected to controlling process rather
than to STDOUT.

» char *parisv_type(const char *in) - Returns the type
of resulting Pari object.

» Implementation for init(), version(), help(), quit()
functions.

» Uses swig to generate XS wrapper code for
GPP: :Pari: :Native module.



GPP - Perl Library

» GPP - Processes user input, handles metacommands, sends
everything else to be evaluated by GPP: :Pari and pushes
results to GPP: :Stack object.

» GPP: :Pari - Provides high-level interface to libpari
functions via GPP: :Pari: :Native.

» GPP::Pari::Native - Wrapper module for Native.so
functions, generated by Swig.

» GPP::Stack - Really just an array of hashes, each element
has a key for input, output and result type.

» Native.so - Shared library linked against 1ibpari.so that
contains symbols from parisv.c along with generated XS
wrappers from Native_ wrap.c.



primefactors.pl

Using GPP in a script

The examples/primefactors.pl script demonstrates using GPP
to compute prime factors of 100 randomly generated integers
0 <n <1000. Runs in less than 1 second.



gpPp

Using GPP to write an application

The bin/gpp script demonstrates using GPP to write an
application that provides an interactive shell to 1ibpari.

It emulates about 90% the functionality of the gp binary
distributed with Pari/GP. Uses Term: :Readline: :Zoid for
readline functionality (command history and emacs-like
keybindings).



[deas

Graphical application using XUL: : Gui. (Proof of concept
has been done, but very incomplete /buggy)

Web application with a live script editor, pretty printing
with using libpari function GENtoTeXstr () to generate
TEX output and MathML to render IXATEX in the browser.

Ability to convert Pari data structures into "natural” Perl
objects.

Extend the GP language with pure-perl features.

Possibly create similar bindings to other mathematics
libraries.



Problems and Open Questions

» Build environment makes too many assumptions, not very
robust.

» It would be nice to turn Pari t_VEC, t_MAT structures into
Perl arrays (of arrays (of arrays...) ) but turns out to be a
tricky problem to solve in full generality.

» Export libpari constants and functions in a reasonable
way.
» Need to check version of 1libpari on system before

compiling wrapper library, this is also not particularly easy
to do in a portable (across all unix variants) manner.



End

» GPP source code and wiki: github.com/FreeMonad/GPP

» E-mail: charles.boyd@freemonad.org

Thanks!
That’s it. Thank you for listening.



	Introduction
	GPP
	Applications

