YOUR PERL IS SLOW

(and it does not have to be)

TIMTOWTDI
TIOOFWTDI

e There is more than one way to do it, but there is only one
fastest way to do it.

e If you find the fastest way, nobody will be able to read your
code and everyone reading your code will probably hate you.

e We need to find something in between (unless of course
nobody is reading your code).

WHEN AND WHAT DO
YOU OPTIMIZE?

e It is almost always the most advantageous to start with the
slowest part of your program because you will spend the
least amount of time on it for the most amount of gain.
There are many good perl tools to help us find where that is

and make it faster:

e Devel::NYTProf, Benchmark, Data::Dumper

e The more time you spend optimizing, the more you will see
diminishing returns.

OPTIMIZING IS A
TRADE-OFF

e Make sure you make a backup of your original code before
you start optimizing so you can use it to compare the two.

e You will invariably break something when you optimize
unless you have 100% test coverage (which probably is never
possible in the real world).

e Consider that you may be trading maintainability for speed.

OPTIMIZATION. THE
ARGUMENT

e Should I optimize XYZ?
e Ask yourself:
How often is this code actually executed?

Does it matter if subroutine X is slow (is this something that runs in the
background or an AJAX response?)

How much pain am I going to cause the people I work with by changing
this?

Could I be spending my time better elsewhere?

Can I just throw more hardware at the problem?

TELL ME WHY MY
PROGRAM IS SLOW.

e Devel::NYTProf - Powerful fast feature-rich perl source code
profiler

e Benchmark - benchmark running times of Perl code

e Data::Dumper - on \%INC, and \%main::

DEVEL::NYTPROF CANNOT
TELL YOU WHO YOU ARE

e Devel::NYTProf will show you where your perl program is
slow, but it does not tell you how to fix it.

e Once you know where it is slow, you will know where to
direct your efforts to make it faster.

e This may involve a bit of trial an error, google searching, or
general hard thinking.

DEVEL::NYTPROF
BASICS

e perl -d:NYTProf script.pl
e nytprothtml (nytprofcsv exists, but not covered here)
e Open up nytprof/index.html in your web browser

e If you are running it on a server you can do

e rsync -avZz USER@SERVER:/PATH/ nytprof-project/

o ** CAREFUL ** the nytprof dir will have a complete
copy of your source code.

CONTROLING NYTPROF
DATA COLLECTION

e export NYTPROF=trace=2:start=init:file=/tmp/nytprof.out
e trace=2
e the trace level (more detailed output)
e start=init
e skip profiling BEGIN (and use)
e file=/tmp/nytprof.out

® Where to store the output (.$$ is append automatically if we fork)

EXAMPLE OUTPUT
(FOLLOW THE RED)

Profile of ./quotacheck for 137s (of 141s), executing 657080 statements and 190536 subroutine
calls in 77 source files and 18 string evals.

[Jump to file...

Top 15 Subroutines
Calls P | F | Exclusive

Inclusive Subroutine

Time

Time

/

5120
9416
5097
5116
32
5120
4171
5120
5116
4175
5116
5120
24

1
4163

el * 1 BN 0% IR NP A&

48.3s
41.9s
35.6s
2.08s
1.36s
1.15s
791ms
495ms
470ms
234ms
209ms
189ms
165ms
148ms
148ms

48.3s
419s
35.6s
2.08s
1.36s
89.4s
1.19s
659ms
2.96s
234ms
345ms
89.5s
165ms
181ms

Cpanel::Email::DiskUsage: :CORE:stat 4Opcode)
main: :CORE:ftis (opcode)
Cpanel::Email::DiskUsage: :CORE:read (opcode)
Cpanel::AdminBin::CORE:;ftis (opcode)
Cpanel::ContactInfo: :CORE:readline (opcode)
Cpanel::Email::DiskUsage: :_getdiskused
Cpanel::Config::LoadCpUserFile::_Jload
Cpanel::Email::Maildir::_find maildirsize file
Cpanel::AdminBin::check cache item
Storable::pretrieve (xsub)
Cpanel::AdminBin::get_cache dir
Cpanel::Email::DiskUsage::get_disk used
main: :CORE:ftbinary (opcode)
Cpanel::ContactInfo::fetch contactinfo

1.338 Cpanel::Config::LoadCpUserFile::load

See all 836 subroutines

EXAMPLE OUTPUT

(FOLLOW THE RED)

spent 48.3s within Cpanel::Email::DiskUsage::CORE:stat which was called 5120 times, avg 9.44ms

5120 times (48.3s+0s) by Cpanel::Email::DiskUsage:: getdiskused at line 2 avg 9.44ms/call
sub Cpanel::Email::DiskUsage::CORE:stat; # opcode

Line | State Time Calls Time Code
ments | on line in subs

213 |5120 484s 5120 48.3s ‘my (Smaildir_size_file size, S$maildir_size_file_mtime) = (
spent 48.3s making 5120 calls to Cpanel::Email::DiskUsage

® We can tell that we have spent 48.3s making 5120 calls to
Cpanel::Email::DiskUsage::CORE::stat.

This is a call to perl’s internal stat function, which is really

just a system call to stat

LETS DO I'T AGAIN

JUST TO BE SURE

Profile of ./quotacheck for 6.93s (of 10.9s), executing 646199 statements and 185395 subroutine calls in 77 source files

[Jump to file... $)

Top 15 Subroutines
Calls @ P | F | Exclusive | Inclusive Subroutine

Time Time
5120 1 1 1.07s 3.05s Cpanel::Email::DiskUsage::_getdiskused
4155 1 1 80Ims 1.19s Cpranel::Config::LoadCpUserFile::_load
5120 1 1 476ms 628ms Cpanel::Email::Maildir::_find maildirsize file
5116 1 1 442ms 792ms Cpanel::AdminBin: :check cache_item
4160 6 6 241ms 241ms Storable::pretrieve (xsub)
5116 1 1 202ms 258ms Cpanel::AdminBin::get_cache dir
5120 1 1 181ms 3.23s Cpanel::Email::DiskUsage::get_disk used
4155 1 1 151ms 1.34s Cpanel::Config::LoadCpUserFile::load
1 1 1 147ms 154ms Cpanel::ContactInfo::fetch contactinfo

27446 4 1 134ms 134ms Cpanel::Email::Maildir::CORE:match (opcode)
5097 1 1 124ms 124ms Cpanel::Email::DiskUsage: :CORE:read (opcode)
9311 16 13 94.6ms 94.6ms IO0::Handle: : DESTROY
4155 1 1 89.2ms 1438 Cpanel::Config::LoadCpUserFile::loadcpuserfile

16362 4 1 87.9ms 87.9ms Cpanel::Email::DiskUsage: :CORE:match (opcode)
9416 2 1 77.5ms 77.5ms main: :CORE: ftis (opcode)

See all 814 subroutines

WHAT HAPPENED?

e The first run took over 100 seconds; the second run took under 10 seconds.

e Almost all the overhead in this program is disk i/0. On the second run
Linux cached our reads/opens so it was much faster.

e We can now see where our perl code is slow (_ getdiskused) instead of
what is taking time to read from the disk.

e In this instance we can get the most gains by redesigning how data is
stored on the disk instead of optimizing the perl code. The slowest part
is really less the 1% of the time. We should probably focus our efforts
there if we think its worth the time.

e This code has already been though an optimization cycle.

ALL PROFILERS LIE

e All profilers must record timing information. Running code
though a profiler will make it slower.

There may be race conditions in your code that make it behave
differently when profiled.

The overhead of the profiler makes something appear slower then
it really is.

If you are doing lots of disk reads, you must consider that the os
may cache your file opens/reads/etc and the profile will seem much
faster the second time around. (sometime you need to reboot to
ensure a pristine run)

SOMETHING WE CAN

SPEED UP IN A SNAP

Profile of what_is_a_hash.pl for 16.6s (of 16.8s), executing 26140 statements and 7948 subroutine calls in 62 source files and

[Jump to file...)
Top 15 Subroutines
Calls | P | F |Exclusive | Inclusive swrou:!y
Time Time
1 1 1 162s 16.2s main::print_if_we_have it
466 1 1 91.8ms 123ms DateTime::Locale::_register
4004 1 1 545ms 54.5ms main::CORE:print (opcode)
468 2 2 285ms 28.5ms Params::Validate::_validate (xsub)
1 1 1 255ms 57.3ms PateTime::Locale::add_aliases
1 1 1 18.8ms 280ms main: :BEGINE6
423 2 1 16.5ms 16.5ms Params::Validate::_validate pos (xsub)
422 1 1 153ms 31.8ms DateTime::Locale::_registered i
1 1 1 138ms 14.3ms DateTime::Locale::BEGIN@11
1 1 111.3ms 76.1ms main::BEGIN@3
12 12 10 10.8ms 17.3ms base::import (recurses: max depth 2, inclusive time 5.20ms)
28 28 14 10.3ms 15.2ms Exporter::import
1 1 1 943ms 132ms PateTime::Locale::register
1 1 1 564ms 20.7ms 10::Socket::SSL::BEGIN@17
1 1 1 534ms 9.12ms DateTime::Locale::BEGIN@10

See all 1284 subroutines

THERE IS THE

SLOWDOWN

We are spending all of our time in sub print_if we_ have it

Line | State Time Calls Time Code

ments | on line in subs |
14 —
spent 16.2s (16.2+54.5ms) within main::print_if we_have_it whi
once (1l6.2s+54.5ms) by main::RUNTIME at line 12
| sub print_if we_have_it {
15 1 221ms my @product_array = ('fried cheese', (0 .. 10000), 'sugar
16 1 1.92ms for (0 .. 1000) {
17 11001 16.3ms foreach my $want (€{ $_[0] }) {
18 | 4004 16.2s 4004 54.5ms print "We " . ((grep { $_ eq $want } @product_arre
spent 54.5ms making 4004 calls to main::CORE:prir
19
20
21

Searching a large array can be slow.

ITS SLOWWWW
HOW DO I FIX IT?

e There are generally two approaches, the first one is the more
drastic approach:

® 1) Re-think how your code works. Take a completely new
approach to the problem:

e Rewrite part of your code in C / XS / Inline
® Are you suffering from startup/shutdown time problems?

e Consider mod_ perl, speedycgi, wrapping up your code
into a server, or using perlcc

ITS SLOWWWW
HOW DO I FIX IT?

e 2) The less drastic approach : rewrite the little bits:
Do you really need those loops?

Are you doing lots of operations and then throwing it away?

Can you trade memory for speed and do you really want to?

Read NCLARK’s presentation titled “When perl is not quite fast
enough.” It has been one of the most useful bits perl

documentation I have ever read: http://www.flirble.org/~nick/
P/Fast Enough/

map, pack, and grep your code to speed

http://www.flirble.org/~nick/P/Fast_Enough/
http://www.flirble.org/~nick/P/Fast_Enough/
http://www.flirble.org/~nick/P/Fast_Enough/
http://www.flirble.org/~nick/P/Fast_Enough/

SPEEDING IT UP

® We can trade memory for speed by using a hash, or some
type of external database.

e For example, here is the new function:

sub print_if_we_have_it {
my ¥product_hash = map { $_ => undef } @{ S_[Q] }; #trade memory for speed
for (@ .. 1000) {
foreach my $want (@customer_wants) {
print "We " . (exists Sproduct_hash{$want} ? 'do' : 'do not') . " have 'S

' }

MUCH BETTER

Profile of ahh_thats_a_hash.pl for 561ms (of 774ms), executing 26141 statements and 7948 subroutine calls in 62 source

[Jump to file... 3
Top 15 Subroutines
Calls | P | F | Exclusive | Inclusive Subrouﬂny
Time Time
1 1 11.128ms 191ms main::print if we have it#¥
466 1 1 886ms 118ms DateTime::Locale::_register
4004 1 1 67.7ms 67.7ms main::CORE:print (opcode)
468 2 2 275ms 27.5ms Params::Validate::_validate (xsub)
1 1 1 24.7ms 55.5ms DateTime::Locale::add aliases
1 1 1 186ms 272ms main: :BEGINE6
423 2 1 16.1ms 16.1ms Params::Validate::_validate pos (xsub)
aaas 1 1 148ms 30.9ms PateTime::Locale::_registered_id
1 1 1 13.6ms 14.0ms DateTime::Locale::BEGIN@11
1 1 1 112ms 75.3ms main::BEGIN@3
12 12 10 10.6ms 17.0ms base::import (recurses: max depth 2, inclusive time 5.06ms)
28 28 14 9.83ms 14.6ms Exporter::import
1 1 1 9.15ms 128ms DateTime::Locale::register
i1 1 1 554ms 20.5ms I10::Socket::SSL::BEGIN@17
1 1 1 531ms 9.08ms DPateTime::Locale::BEGIN@10

See all 1284 subroutines

HASHES: ONE OF THE BEST

FEATURES OF THE LANGUAGE

Line | State Time Calls Time Code
ments | on line in subs
14
spent 191ms (123+67.7) within main::print if we have_ it which was
once (123ms+67.7ms) by main::RUNTIME at line 12
sub print_ if we_have_it {
15 1 1.90ms my @product_array = ('fried cheese', (0 .. 10000), 'sugar co
16 1 27.4ms my $product hash = map { §_=> undef } E@product_array; #sacr
17 1 9.22ms Eor: .9 =n 1000 §
18 11001 14.7ms foreach my S$want (€{ $_[0] }) {
19 14004 138ms 4004 67.7ms print "We " . (exists $product_hash{$want} ? 'do' : 'd
spent 67.7ms making 4004 calls to main::CORE:print,
20 }
21 }
22 }

We went from 16.2s to 138 ms on this line by switching to a

hash at the expense of some memory.

NYTPROF GOTCHAS

e Make sure you are not closing random file handles in your
perl code. NYTProf writes to nytprof.out*, and you if close
off those fds you won’t get any profile data.

e Make sure your code actually does run faster. Time how
long a run of your code takes before and after your changes.

e Use Benchmark

e Tools such as time, ps, watch, etc (these are not very
exact)

ROUGH VERIFICATION
WITH TIME

$ time perl what_is_a_hash.pl > /dev/null
real om16.810s
BEFORE

user omi16.793s

SyS Omo0.012s

$ time perl ahh_thats_a_hash.pl >/dev/null

real omo.214s
user O0mo.208s

Sys OmO0.008s

VERIFY WITH
BENCHMARK

e Extract only the code you need to test.
e Use Benchmark::cmpthese:

e cmpthese($count, {

before' => sub { ...before code... },
after' => sub { ...after code... },

Sk

BENCHMARK TEST

CODE

use Benchmark ();
my @customer_wants = ('fried cheese', 'health food', 'sugar cookies', 'a new car');
my @product_array = ('fried cheese', (@ .. 10000), 'sugar cookies', (10002 .. 20000), 'health food');

my ¥product_hash = map { $_ => undef } @product_array; #sacrafic memory for speed
Benchmark: :cmpthese(

5000,

{

‘before’ => sub { print_if_we_have_it_before(\@customer_wants); },
‘after' => sub { print_if_we_have_it_after(\@customer_wants); },
}
)H
sub print_if_we_have_it_after {
foreach my Swant (@{ $_[@] }) {
print STDERR "We " . (exists $product_hash{Swant} ? 'do' : 'do not') . " have '$want'!\n";
}
}

sub print_if_we_have_it_before {
foreach my Swant (@{ S_[0] }) {
print STDERR "We " . ((grep { S_ eq Swant } @product_array) ? 'do' : 'do not') . " have 'Swant'!\n";

}

I'T REALLY IS FASTER

e $ perl benchmark.pl 2>/dev/null
(warning: too few iterations for a reliable count)
Rate before after
before 59.0/s -— -100%
after 125000/s 211800%

® We really do not need to do more than 5000 iterations to
know the new code is much faster.

e If your numbers are much closer, you should make sure you
get a reliable count.

USING DATA::DUMPER
TO FIND IMPORT BLOAT

use I0O: :Socket::SSL;

e Consider the sample script on the right: T 5

e It is all use Statements use Net::SSLeay;

use DateTime;

e It took 0.205s seconds to run
use 10::Compress: :Gzip;

® use X iS reaIIYjUSt use DateTime::Locale::Catalog;

; : use POSIX;
o BEGIN { require X; import X; }

use Data::Dumper;

e It is not uncommon to see a small script spend more time
loading modules then executing the main code.

IMPORTS FROM USE KILL
YOUR STARTUP TIME

print Data::Dumper: :Dumper(\¥main::); » =

— When you “use in” a perl module,
'setuid' => *::setuid, s X .
'UCHAR_MAX' => *: :UCHAR_MAX, everything that it exports get copied
"CHILD_MAX' => *::CHILD_MAX,
< ; ’ g " . 0 e
TiGe e e into main:: (usually via Exporter)
'SIGQUIT' => *::SIGQUIT,
"USHRT_MAX" => *::USHRT_MAX, 3 3
Sl sl g e which takes time and wastes memory
'tzset' => *::tzset,
'sigprocmask' => *::sigprocmask,
"SEEK_SET' => *::SEEK_SET,
'strtoul' => *::strtoul,
"CLK_TCK' => *::CLK_TCK,
"F_SETLKW' => *::F_SETLKW,
"F_UNLCK"' => *::F_UNLCK,
'S_IXOTH' => *::S_IXOTH, use Net::SSLeay ();
"PARMRK" => *::PARMRK,
"UNIVERSAL::"' => *{"::UNIVERSAL::'},
'pathconf' => *::pathconf, %
'ELT_ROUNDS' => *::FLT_ROUNDS, instead of
"L_tmpname' => *::L_tmpname,
"longjmp' => *::longjmp,
"EISCONN' => *::EISCONN,
'DBL_MANT_DIG' => *::DBL_MANT_DIG, use Net::SSLeay;

'_<perlmain.c' => *{'::_<perlmain.c'},

You can avoid this by doing

PRACTICALLY FREE
GAINS

e Switching all the use X; statements to use X (); had the
following results:

e The program started up 12% faster.

e The program used 8% less memory while running.

e The more use statements your program has, the
better your returns will be.

e You will have to explicitly call function ie
Data::Dumper::Dumper instead of Dumper

SUMMARY

® Use NYTProf

e Come up with a new approach or clean it up using what
your know or the tips here:

e NCLARK'’s presentation titled “When perl is not
quite fast enough.” It has been one of the most

useful bits perl documentation I have ever read:
http://www.flirble.org/~nick/P/Fast Enough/

e Verify your results with time and Benchmark

http://www.flirble.org/~nick/P/Fast_Enough/
http://www.flirble.org/~nick/P/Fast_Enough/

