
YOUR PERL IS SLOW
(and it does not have to be)

TIMTOWTDI
TIOOFWTDI

There is more than one way to do it, but there is only one
fastest way to do it.

If you find the fastest way, nobody will be able to read your
code and everyone reading your code will probably hate you.

We need to find something in between (unless of course
nobody is reading your code).

WHEN AND WHAT DO
YOU OPTIMIZE?

It is almost always the most advantageous to start with the
slowest part of your program because you will spend the
least amount of time on it for the most amount of gain.
There are many good perl tools to help us find where that is
and make it faster:

Devel::NYTProf, Benchmark, Data::Dumper

The more time you spend optimizing, the more you will see
diminishing returns.

OPTIMIZING IS A
TRADE-OFF

Make sure you make a backup of your original code before
you start optimizing so you can use it to compare the two.

You will invariably break something when you optimize
unless you have 100% test coverage (which probably is never
possible in the real world).

Consider that you may be trading maintainability for speed.

OPTIMIZATION. THE
ARGUMENT

Should I optimize XYZ?

Ask yourself:

How often is this code actually executed?

Does it matter if subroutine X is slow (is this something that runs in the
background or an AJAX response?)

How much pain am I going to cause the people I work with by changing
this?

Could I be spending my time better elsewhere?

Can I just throw more hardware at the problem?

TELL ME WHY MY
PROGRAM IS SLOW.

Devel::NYTProf - Powerful fast feature-rich perl source code
profiler

Benchmark - benchmark running times of Perl code

Data::Dumper - on \%INC , and \%main::

DEVEL::NYTPROF CANNOT
TELL YOU WHO YOU ARE

Devel::NYTProf will show you where your perl program is
slow, but it does not tell you how to fix it.

Once you know where it is slow, you will know where to
direct your efforts to make it faster.

This may involve a bit of trial an error, google searching, or
general hard thinking.

DEVEL::NYTPROF
BASICS

perl -d:NYTProf script.pl

nytprofhtml (nytprofcsv exists, but not covered here)

Open up nytprof/index.html in your web browser

If you are running it on a server you can do

rsync -avz USER@SERVER:/PATH/ nytprof-project/

** CAREFUL ** the nytprof dir will have a complete
copy of your source code.

CONTROLING NYTPROF
DATA COLLECTION

export NYTPROF=trace=2:start=init:file=/tmp/nytprof.out

trace=2

 the trace level (more detailed output)

start=init

skip profiling BEGIN (and use)

file=/tmp/nytprof.out

Where to store the output (.$$ is append automatically if we fork)

EXAMPLE OUTPUT
(FOLLOW THE RED)

C

EXAMPLE OUTPUT
(FOLLOW THE RED)

 We can tell that we have spent 48.3s making 5120 calls to

Cpanel::Email::DiskUsage::CORE::stat.

This is a call to perl’s internal stat function, which is really

just a system call to stat

LETS DO IT AGAIN
JUST TO BE SURE

WHAT HAPPENED?

The first run took over 100 seconds; the second run took under 10 seconds.

Almost all the overhead in this program is disk i/o. On the second run
Linux cached our reads/opens so it was much faster.

We can now see where our perl code is slow (_getdiskused) instead of
what is taking time to read from the disk.

In this instance we can get the most gains by redesigning how data is
stored on the disk instead of optimizing the perl code. The slowest part
is really less the 1% of the time. We should probably focus our efforts
there if we think its worth the time.

This code has already been though an optimization cycle.

ALL PROFILERS LIE

All profilers must record timing information. Running code
though a profiler will make it slower.

There may be race conditions in your code that make it behave
differently when profiled.

The overhead of the profiler makes something appear slower then
it really is.

If you are doing lots of disk reads, you must consider that the os
may cache your file opens/reads/etc and the profile will seem much
faster the second time around. (sometime you need to reboot to
ensure a pristine run)

SOMETHING WE CAN
SPEED UP IN A SNAP

THERE IS THE
SLOWDOWN

We are spending all of our time in sub print_if_we_have_it

Searching a large array can be slow.

ITS SLOWWWW
HOW DO I FIX IT?

There are generally two approaches, the first one is the more
drastic approach:

1) Re-think how your code works. Take a completely new
approach to the problem:

Rewrite part of your code in C / XS / Inline

Are you suffering from startup/shutdown time problems?

Consider mod_perl, speedycgi, wrapping up your code
into a server, or using perlcc

ITS SLOWWWW
HOW DO I FIX IT?

2) The less drastic approach : rewrite the little bits:

Do you really need those loops?

Are you doing lots of operations and then throwing it away?

Can you trade memory for speed and do you really want to?

Read NCLARK’s presentation titled “When perl is not quite fast
enough.” It has been one of the most useful bits perl
documentation I have ever read: http://www.flirble.org/~nick/
P/Fast_Enough/

map, pack, and grep your code to speed

http://www.flirble.org/~nick/P/Fast_Enough/
http://www.flirble.org/~nick/P/Fast_Enough/
http://www.flirble.org/~nick/P/Fast_Enough/
http://www.flirble.org/~nick/P/Fast_Enough/

SPEEDING IT UP

We can trade memory for speed by using a hash, or some
type of external database.

For example, here is the new function:

MUCH BETTER

HASHES: ONE OF THE BEST
FEATURES OF THE LANGUAGE

We went from 16.2s to 138ms on this line by switching to a

hash at the expense of some memory.

NYTPROF GOTCHAS

Make sure you are not closing random file handles in your
perl code. NYTProf writes to nytprof.out*, and you if close
off those fds you won’t get any profile data.

Make sure your code actually does run faster. Time how
long a run of your code takes before and after your changes.

Use Benchmark

Tools such as time, ps, watch, etc (these are not very
exact)

ROUGH VERIFICATION
WITH TIME

$ time perl ahh_thats_a_hash.pl >/dev/null

real 0m0.214s

user 0m0.208s

sys 0m0.008s

$ time perl what_is_a_hash.pl > /dev/null

real 0m16.810s

user 0m16.793s

sys 0m0.012s

BEFORE

AFTER

VERIFY WITH
BENCHMARK

Extract only the code you need to test.

Use Benchmark::cmpthese:

cmpthese($count, {
 'before' => sub { ...before code... },
 'after' => sub { ...after code... },
 });

BENCHMARK TEST
CODE

IT REALLY IS FASTER

$ perl benchmark.pl 2>/dev/null
 (warning: too few iterations for a reliable count)
 Rate before after
before 59.0/s -- -100%
after 125000/s 211800%

We really do not need to do more than 5000 iterations to
know the new code is much faster.

If your numbers are much closer, you should make sure you
get a reliable count.

USING DATA::DUMPER
TO FIND IMPORT BLOAT

Consider the sample script on the right:

It is all use Statements

It took 0.205s seconds to run

use X is really just

BEGIN { require X; import X; }

It is not uncommon to see a small script spend more time
loading modules then executing the main code.

use IO::Socket::SSL;

use IO::Handle;

use Net::SSLeay;

use DateTime;

use IO::Compress::Gzip;

use DateTime::Locale::Catalog;

use POSIX;

use Data::Dumper;

IMPORTS FROM USE KILL
YOUR STARTUP TIME

When you “use in” a perl module,

everything that it exports get copied

into main:: (usually via Exporter)

which takes time and wastes memory

You can avoid this by doing

use Net::SSLeay ();

instead of

use Net::SSLeay;

PRACTICALLY FREE
GAINS

Switching all the use X; statements to use X (); had the
following results:

The program started up 12% faster.

The program used 8% less memory while running.

The more use statements your program has, the
better your returns will be.

You will have to explicitly call function ie
Data::Dumper::Dumper instead of Dumper

SUMMARY

Use NYTProf

Come up with a new approach or clean it up using what
your know or the tips here:

NCLARK’s presentation titled “When perl is not
quite fast enough.” It has been one of the most
useful bits perl documentation I have ever read:
http://www.flirble.org/~nick/P/Fast_Enough/

Verify your results with time and Benchmark

http://www.flirble.org/~nick/P/Fast_Enough/
http://www.flirble.org/~nick/P/Fast_Enough/

