
Process Management
in Perl

Houston Perl Mongers
November 12, 2020

Overview

 Part I – Introduction to the Pain
 What's a process?
 Process control in userland (i.e., the shell)
 Processes versus Threads
 Note about Perl ithreads™
 Perl's fork

 Part II – Making It Less Painful
 Parallel::ForkManager “family”
 Perl's Multi-core Engine (MCE) Module
 Other interesting Perl modules

Not Covered

 Efficient IPC among fork'ed perl processes
(though this is an interesting topic)

 Anything related to “Perl threads” (ithreads)

 Work scheduling and complicated process man-
agement

 “async” frameworks or higher level programming
models

Part I

What's a Process?

 Operating System concept

 How the OS manages “work” and allocation of
sytem resources (time on CPU, memory, network,
file system, etc)

 e.g., running a basic Perl script generates a single
process

 Most processes we write are single lines of execu-
tion – i.e., not “parallel” or “concurrent”

Threads != Processes

 Threads are “light weight” and communicate via shared
memory (with “main” thread and sibling threads); all
“threads” are part of a single parent logical OS process

 Forked processes are full weighted process and do not
share memory with parent or siblings, therefore copying all
of the memory related is required

 Perl doesn't have 'real' threads and anyone who says it
does is lying or ignorant (I usually assume the latter)

 For 'real' threading, see: OpenMP, pthreads, or the Qore
scripting language

Note about Perl ithreads

Best Summary on why “ithreads” suck I've found:
 https://metacpan.org/pod/Coro#WINDOWS-PROCESS-EMULATION

Userland Process Control*
*this is a grossly inadequate list - “ddg for much more info”

Shell (e.g., bash) commands and hints:

 <ctrl-z>
sends a process running into a suspended state

 fg
resumes suspended process into the foreground

 bg
resumes supended process into the background

 command&
sends a shell command into the background, creates a “child” prcocess

 (command)&
“fire and forget” command in subshell, asynchronously

 wait
foreground script control flow aware of child processes

Scripted Process Control
bash Example

#!/usr/bin/env bash

parentPID=$$
for i in $(seq 1 10); do
 # child subshell
 (
 sleep 1;
 echo " child process (pid: $!) number says hello" \
 "- I love my parent (pid: $parentPID)";
 sleep 5
)&
 childPID=$!
 echo my child, $childPID launched!
done

echo waiting
wait
echo all done, exiting...

Parent process Id
Child process Id

Parent blocking “wait” for ALL
children to return

Child's body

Scripted Process Control
bash Example

#!/usr/bin/env bash

MAX_CHILD=10
COUNT=0
for i in $(seq 1 55); do
 (sleep 1; echo "Child $i of Parent ($$). Child (pid: $!)"; sleep 5)&
 COUNT=$(($COUNT+1))
 if [$COUNT -eq $MAX_CHILD]; then
 echo reached max child process of $MAX_CHILD
 echo waiting for them ALL to finish, then will resume ...
 wait
 echo .. done waiting
 # reset COUNT
 COUNT=0
 fi
done

if [$COUNT -gt 0]; then
 echo waiting for remaining $COUNT children
 wait
fi

echo all done, exiting...

“Throttles” number of concurrent child processes using a
$COUNT, if/then, and multiple waits

wait for remaining child processes if less than
$MAX_CHILD

Child's body

wait

 bash's “wait” will wait for ALL child processes

 perl's “wait” is blocking until ONE of any of the
parent's children finish

 perl's “wait” returns “-1” if there are no child pro-
cesses still running

 “blocking” wait for all in perl requires checking until it
returns “-1”

while (0 < wait) { };

Scripted Process Control
perl Example

#!/usr/bin/env perl

use strict;
use warnings;
++$|; #autoflush
for my $i (1 .. 10) {
 my $child_pid = fork();
 CHILD_SUBSHELL:
 if (0 == $child_pid) {
 sleep 1;
 print qq{I am child process ($$)!\n};
 sleep 5;
 exit; #<- if this is not here, the child will continue the loop
 }
 PARENT_PROCESS:
 if (0 < $child_pid) {
 print qq{I am the parent process ($$)!\n};
 }
}

"spin wait"
while (0 < wait) { }
print qq{...done\n};

Child process Id
Parent process IdCall to fork

fork returns:

- “0” for the child process
- PID of child process for the Parent process

Note: this is how you dispatch child/parent
code

“autoflush” for STDOUT

Child's body

Scripted Process Control
perl Example

#!/usr/bin/env perl

use strict;
use warnings;
++$|; # autoflush STDOUT
my $MAX_CHILD = 10;
my $COUNT = 0;
my $parent_pid = $$; # capture parent script PID
for my $i (1 .. 55) {
 my $child_pid = fork();
 ++$COUNT; # yes, this value - preincrement is visible to the child
 CHILD_SUBSHELL:
 if (0 == $child_pid) {
 sleep 1;
 print qq{I am child process ($$) my parent is ($parent_pid)!\n};
 sleep 2;
 exit; #<- if this is not here, the child will continue the loop
 }
 PARENT_PROCESS:
 if (0 < $child_pid) {
 print qq{I am the parent process ($$)!\n};
 if ($COUNT == $MAX_CHILD) {
 print qq{reached max child process of $MAX_CHILD\n};
 print qq{waiting for them ALL to finish, then will resume ...\n};
 # "spin wait"
 while (wait > 0) { }
 $COUNT = 0;
 print qq{.. done waiting\n};
 }
 }
}
if ($COUNT > 0) {
 print qq{waiting for remaining $COUNT children\n};
 while (wait > 0) { }
}
print qq{all done, exiting...\n};

fork returns:

- “0” for the child process
- PID of child process for the Parent process

“autoflush” for STDOUT

Call to fork

Child's body

waitpid

 perl provides for additional precision in
blocking in the parent

 Whereas wait proceeds if any child finish-
es or there are no children

 waitpid will wait for a specific child PID to
complete

waitpid
#!/usr/bin/env perl

use strict;
use warnings;
++$|; #autoflush

my @childs = ();
for my $i (1 .. 10) {

 my $child_pid = fork();

 CHILD_SUBSHELL:
 if (0 == $child_pid) {
 sleep 1;
 print qq{I am child process ($$)!\n};
 sleep 5;
 exit; #<- if this is not here, the child will continue the loop
 }

 PARENT_PROCESS:
 if (0 < $child_pid) {
 print qq{I am the parent process ($$)!\n};
 push @childs, $child_pid;
 }
}

foreach my $childpid (@childs) {
 # blocking wait
 waitpid($childpid,0);
 print qq{Child PID $childpid has completed\n};
}
print qq{...done\n}

blocking

waitpid
#!/usr/bin/env perl

use strict;
use warnings;
use POSIX ':sys_wait_h';
++$|; #autoflush

my @childs = ();
for my $i (1 .. 10) {
 my $child_pid = fork();
 CHILD_SUBSHELL:
 if (0 == $child_pid) {
 sleep 1;
 print qq{I am child process ($$)!\n};
 sleep 5;
 exit; #<- if this is not here, the child will continue the loop
 }
 PARENT_PROCESS:
 if (0 < $child_pid) {
 print qq{I am the parent process ($$)!\n};
 push @childs, $child_pid;
 }
}
treats @childs as a stack that readds child pids that have not
yet finished
while (my $childpid = pop @childs) {
 # blocking wait
 if (0 == waitpid($childpid,WNOHANG)) {
 print qq{Child PID $childpid still running, moving on...\n};
 push @childs, $childpid;
 }
 else {
 print qq{Child PID $childpid has completed\n};
 }
}

print qq{...done\n};

non-blocking

waitpid And $SIG{CHLD}
#!/usr/bin/env perl

use strict;
use warnings;
++$|; #autoflush
use POSIX ":sys_wait_h";

my %child_status = ();
$SIG{CHLD} = sub {
 while ((my $child = waitpid(-1, WNOHANG)) > 0) {
 $child_status{$child} = qq{Child process $child completed with status $?\n};
 }
};

my @childs = ();
for my $i (1 .. 10) {
 my $child_pid = fork();
 CHILD_SUBSHELL:
 if (0 == $child_pid) {
 sleep 1;
 print qq{I am child process ($$)!\n};
 sleep 5;
 exit; #<- if this is not here, the child will continue the loop
 }
 PARENT_PROCESS:
 if (0 < $child_pid) {
 print qq{I am the parent process ($$)!\n};
 push @childs, $child_pid;
 }
}

while (0 < wait) {};

foreach my $child (keys %child_status) {
 print $child_status{$child};
}
print qq{...done\n};

Blocking
“spin” wait

Non-blocking waitpid in
$SIG{CHLD} handler

Strengths and Advantages OF Using
bash

 Straightforward

 Child processes are isolated from execution con-
text (no accidentaly running of current script in
child)

 Does what I mean (e.g., wait is “wait for all”)

 Less flexibility means it's hard to get too complex
without meaning to

Strengths and Advantages OF Using
perl

 Perl language makes if much easier to manage child
processes to achieve maximum throughput (target
100% active child PIDs for duration, load balancing,
etc)

 CPAN is full of interesting “helper” modules for man-
aging external child processes,

fork vs. system

 Perl provides several ways to spawn subprocess-
es: fork, system, and `command`

 `command` (backticks) semantics is also provid-
ed for in the shell (e.g., bash)

 system and `command` facilities in Perl are
strictly for launching subshells in which the gener-
ic commands are executed

 Perl's fork starts a new perl interpreter and
copies the current 'context' (variables, etc) to it

fork “Context”

 Perl's fork starts a new perl interpreter and copies the
current 'context' (variables, etc) to it

 What does this mean?

 It means that it is cloning the current execution of the
perl interpreter (“the script”) and that the “child” perl
process:

 Running the same script starting from the call to fork

 Maintains knowledge of all variables and program states

Parent-Child Communication
and fork

 Althought we can set $SIG{CHLD}, that's often not sufficient

 There is no “interprocess communication” after fork (unlink in real
shared memory threads)

 But the parent can completely control the state of the child process at
the time of creation; e.g. variables

 In this way, fork can be said to be a deep clone the parent executing
perl process (full copy of fork, there are no references preserved)

 IPC::Fork::Simple looks interesting, but it's not covered here

Note: facilitating IPC between parent and child is possible, but is a full
talk itself (maybe as a follow up to this one) – spoiler: named pipes,
“freeze/thaw” to disk, redis, “Mqs”, databases, etc

Parent-Child Communication
and fork

What we want.

What we get.

When to use fork in perl

 You have a lot of resource intensive “tasks” to
perform

 You have access to a “bare metal” machine with
many cores (or many virtual CPUs on somebody
else's computer – s/cloud/butt/)

 Task can be dispatched asynchronously and no
IPC is required

Example Tasks

 Downloading from many URLs (http, ftp, etc)

 Uploading many files to multiple resources (e.g.,
back ups to cloud, etc)

 Processing many images, documents, or other
files

 Regular system-wide crons or “periodic” scripts
that affect a large number of users

Part II

Parallel::ForkManager

 Implemented as a very light wrapper around fork

 Makes it straightforward and easy to schedule
work via fork efficiently:

 Set maximum number of child processes

 Precise blocking (to maximize system resources)

 Specify communication back from child processes (via Storable)

 Parent level, “event” based callbacks (run_on_wait, run_on_start)

Parallel::ForkManager

#!/usr/bin/env perl

use strict;
use warnings;
use Parallel::ForkManager;
++$|; # autoflush for STDOUT

my $pm = Parallel::ForkManager->new(4);

for my $i (1 .. 10) {
 print qq{I am the parent process ($$)!\n};
 $pm->start and next; # child proceeds, parent process returns to top of loop
 sleep 1;
 print qq{I am child process ($$)!\n};
 sleep 5;
 $pm->finish; # terminates child process
}

Child's body

Parallel::ForkManager::Segmented

 Built around Parallel::ForkManager

 Not a subclass

 Primary purpose is for a given list of items (any-
thing in an array or list):

 Spawn $nproc works (# of forks)

 Process $batch_size per worker spawned

 Using subroutine reference specified by $process_item

Parallel::ForkManager::Segmented

Child's body

#!/usr/bin/env perl

use strict;
use warnings;
use Parallel::ForkManager::Segmented;
++$|; # autoflush for STDOUT

define list of items (here it's just a list of numbers)
my @queue = (1 .. 55);

kick off processing
Parallel::ForkManager::Segmented->new->run(
 {
 WITH_PM => 1, # required to invoke Parallel::ForkManage, othewise it's serial
 items => \@queue,

 # number of worker processes at any given time
 nproc => 4,

 # chunks of work, per fork
 batch_size => 5,

 # subroutine reference for processing each item in @queue
 process_item => sub {
 my $item = shift;
 sleep 1;
 print qq{I am child process ($$) - items $item!\n};
 sleep 5;
 return;
 },
 }
);

Child's body

MCE – Perl Multi-Core Engine

 Fundamentally fork based, but maintains a pool of
worker processes that can coordinate and communi-
cate

 Can be coupled with async frameworks like AnyEvent

 Basically, Parallel::ForkManager::Segmented
on steroids

 Looks well suited to implement things like
map/reduce, definitely on a “higher level” than

MCE – Perl Multi-Core Engine

“MCE spawns a pool of workers and therefore does not fork a new
process per each element of data. Instead, MCE follows a bank queu-
ing model. Imagine the line being the data and bank-tellers the parallel
workers. MCE enhances that model by adding the ability to chunk the
next n elements from the input stream to the next available worker.”

https://metacpan.org/pod/MCE

MCE – Perl Multi-Core Engine

#!/usr/bin/env perl

use strict;
use warnings;

use MCE;

my $mce = MCE->new(
 max_workers => 4,
 user_func => sub {
 my ($mce) = @_;
 $mce->say(sprintf(qq{I am child process %s (Worker Id is %s).}, $$, $mce->wid));
 }
);

$mce->run;

MCE – Perl Multi-Core Engine

Sampling of Interesting Modules

 Proc::Fork
 Fork::Promise
 IPC::Fork::Simple
 fork::hook
 Much of the Parallel::* name space
 Coro
 AnyEvent
 POE
 PDL::Parallel::MPI

Thank You

	Title
	Long-term Goal
	Slide 3
	Slide 4
	Customer Wishes
	Slide 6
	Slide 7
	Fulfilling Customer Needs
	Cost Analysis
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Strengths and Advantages
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Next Steps of Action

