Classic Object Oriented Perl

iR ' |
Y [
" = |

i] Y |
kY |
L 1
T
W i

g

h

ﬂbjeuﬂ

il
W

\\
'd
'\
!

L
|
!
|
|
|

|
|
i
\

Ip\l

‘bject Oriented Perl” Book

By Damian Conway

Published in early 2000

Perl 5.5

No “MOP” required

Deep coverage of fundamental Perl

Shows complete parity of basic OOP
Perl to Smalltalk, Eiffel, Java, and
C++

No: our, parent, state

Outline

Intro

bless

Lexical closures

AUTOLOAD
base.pm
overload.pm
tie

Today's Options

Summary

Perl “core” has been OOP since
efore version 5.6

Table B.3 Selected comparative syntax for Java and object-oriented Perl (continued)

-
”

q“‘ Construct Java
! A PPENDIX B . !

What you might know instead

.1 Perl and Smallcalk 4 B.3 Perland]
.2 Perland C++ 443 B.4 Perl a

Table B3 Selected comparative syntax for Java and object-oriented Perl

Construct Perl

comment f

Similar Parity
Charts in the book
(o]

r.methodNam

e C++
» Eiffel
o Smalltalk

bl ess

e Basis of a “constructor”

* Tell's perl that the references is
of a certain class (package) type

N
““ |
* Dereference notation (- >) when

to call a method (subroutine) passes the
package name as a string for the first argument.

* Works with any Perl data type (scalar, array,
hash, typeglob, file handle, code ref)*

*Conway covers this extensively

bl ess — constructor

use strict;
use warnings;

package My;

sub new {
my $pkg = shift;
my $self = {};
return bless $self, $pkg;
}

1;

@ SA

e par ent . pmis favored today,
base. pmwas used originally

« Both affect the @ SA array (as in,
this package “is a” (or inherits) from the
specified package

« @ SAis an array, so a package can have an “is
a’ relationship with many other packages (don't
do it).

Adding to @ SA

use strict;
use warnings;

package My: :Package;
@My : :Package: :ISA = (gqw/My/);

:1;

use strict;
use warnings;

package My: :Package;
use base g{My};

1;

use strict;
use warnings;

package My: :Package;
use parent gq{My};

1;

Realistic Example

use strict;

use warnings; Parent class
package My; use strict; .
use warnings; Driver
sub new { use lib q{.};
my ($pkg, %self) = @_; use My Q;
return bless \¥self, $pkg; use My::Package O);
}
require Data::Dumper;
13
my $x = My->new(keyl => 1, key2 => 2, key3 => 3);
g - print Data: :Dumper: :Dumper($x);
el Child class

use warnings;
my $y = My::Package->new(keyd => 4, key5 => 5, keyb => 6);

package My::Package; .
use parent q{My}; print Data::Dumper: :Dumper($y);

1; - —
$VARL = bless({

'key3d' = 3,
'key2' = 2,
'keyl' => 1
3, "My");
$VAR1 = bless({
'keyd' => 4,

'key6' => 6,
'key5' => 5
}, "My::Package');

Lexical Closures

* Provides basis for data protection (e.g., creating
read-only variables)

 These days, | ocal Is common inside of these
* Provided inside of any curly braces constructs:

- subroutines
- control flow (I f, whi | e, do, eval , et c)
- bare blocks -{ ...}

Protecting Variables

approach 1 - lexical closure

PROTECT_X:

{

my $x = 0;

sub set_x {

my ($self, $new_val) = @_;
.. validation of variable would go here

$x = $new_val;
return $x;
}

sub get_x {
my $self = shift;
return $x;

}

approach 2 - (more modern perls 'state' wvariable + named getter inside of setter)

sub set_y {
my ($self, $new_val) = @_;

state $y = @; # requires 'use v5.10" or greater (yuck)
.. validation of variable would go here

$y = $new_val;

sub get_y {
return $y;

}
}

Options for Accessors

3 v /
; = '
e

» Statically defining package subs in “ 8 e
source code

* Handle dynamically using AUTOLOAD

» Define dynamically during code execution

- Can be done with AUTOLOAD lazily (when called
the first time)

. e
AUTOLOAD??7?

- Many CPAN modules exist for this:
Cbj ect:: Tiny,Cl ass: : Accessor, etc

AUTOLOAD Accessors

use strict;
use warnings;

package My;

sub AUTOLOAD {
my $self = shift;
no strict 'vars';
my $field = $AUTOLOAD;
$field = s/.*:://;
return $self->{$field};
}

sub new {

my ($pkg, ¥self) = @_;
return bless \¥self, $pkg;

}

1;

Parent class

use strict;
use warnings;

package My: :Package;
use parent q{My};

L Child class

use strict;

use warnings;

use lib g{.};

use My Q;

use My::Package (;

Driver

my $x = My->new(keyl => 1, key2 => 2, key3d => 3);

print $x->keyl . qq{ key 1\n};
print $x->key2 . qq{ key 2\n};
print $x->key3 . qq{ key 3\n};

my $y = My::Package->new(keyd => 4, key5 => 5, keyb => 6);
print $y->key4 . qq{ key 4\n};

print $y->key5 . qq{ key 5\n};
print $y->key6 . qq{ key 6\n};

L
1

SEEEEE)
U B W N

L

Class::Accessor

* Very easy to use

 Provides “moose-like” data access declarations
(read-write, read-only, etc)

* Close to, but not quite, the “"common case” for
most “Perl object” needs

Object:: Tiny

First appeared in 2007

Book mentions similar modules

Very similar in nature to Class::Accessor
In fact, compares itself quite a bit in POD
Not a perfect “drop in” for C::A, but close
No data protection attributes

Another Example with Accessors

use strict;
use warnings;

package My;

use Object::Tiny gw/keyl key2 key3 keyd keyS keye/;

1;

Parent class

use strict;
use warnings;

package My: :Package;
use parent q{My};

b Child class

use strict;

use warnings;

use lib g{.};

use My Q;

use My::Package (;

Driver

my $x = My->new(keyl => 1, key2 => 2, key3d => 3);

print $x->keyl . gg{ key 1\n};
print $x->key2 . qq{ key 2\n};
print $x->key3 . qq{ key 3\n};

my $y = My::Package->new(keyd => 4, key5 => 5, keyb => 6);
print $y->key4 . qq{ key 4\n};

print $y->key5 . qq{ key 5\n};
print $y->key6 . qq{ key 6\n};

L
1

Oufput

SEEEEE)
=BT, I FL I N O

=BT, I FL I N O S

overload.pm

 Redefines how perl operators are
handled

« Extremely useful for matching class
semantics with traditional Perl operators

_,.;-__,-z-—“— ———

Overloadable Operations

The complete list of keys that can be specified in the use overload directive are given, separated by spaces, in the values of the
hash %overload::ops :

with_assign = "4 -k [% owk << KL,

assign => '4= —= %= [= %= k= <<= = x= .=',
num_comparison => '€ <= > >= == I=',

'3way_comparison'=> '<=> cmp',

str_comparison => 'lt le gt ge eq ne',

binary = '8 &= | |=* "= b &= |, |2 N,
unary => 'neg ! ~ ~.',

mutators == '++ —',

func => 'atan2 cos sin exp abs log sqrt int',
conversion 'bool "" @+ gr',

1o
fs
e
4.
5.
6.
75
8.
9.

=
= =

. iterators ‘<>t
. filetest X',
. dereferencing '${} @{} %{} &{} *{}',
. matching Tant

o e
L T

. special 'nomethod fallback ='

Other OOP Things

« Exceptions

- die will happily “throw” a string or a scalar ref
(e.g., exception objection)

 Validation

- Been liking Val 1 dat e: : Ti ny a lot
e (next slide)

- Polymorphism

- Roles & Composition (e.g., mixins)

Polymorphism

« One may employ a “prototype
the subclasses define for real; e

pofeid 10 Parent class
package My;

sub AUTOLOAD {
[my $self = shift;
no strict 'vars';
my $field = $AUTOLOAD;
$field =~ s/ .*:://;
return $self->{$field};
}

sub new {

my ($pkg, ¥self) = @_;
é return bless \%self, $pkg;
i,

sub key7
die g{Method prototype must be impl

child class};

sub
die g{Method prototype must be implemented by child class};
i,

sub
die g{Method prototype must be implemented by child class};

use strict;
use warnings;

package My::Package;
use parent q{My};

sub key7 {
my $self = shift;
return $self->{key7};

}

sub key8 {
my $self = shift;
return $self->{key8};
}

sub keyd {
my $self = shift;
return $self->{key9};

}

1;

Child class

Roles & Composition

* Refers to "mixin” and matching capabilities from
different objects into “roles”

 The domain specific languages (DSL) of Moo,
Moose, etc provide extensive support for this

* |'ve personally never understood the real need
for roles

Bug or Feature? Yes.

e LanX Observed this
pattern on Perlmonks
recently.

 Hide exported method In
new packages

* Potential to for negatively
composing objects

ly what happens every time you import a symbol from a module (e.g. use x o

use strict;
use warnings;
use Data::Dump qw/pp dd/;

Use cases for 'sub Pckg::func {}' ?
by LanX (on Jul 30, 2020)
https://perimonks.org/?node_id=11120095

Question: What are the use cases of that pattern?

before package X exists

{ The only thing which comes to mind is monkey patching a sub in another package without adding inner helper functions into that package.

*¥::baz = sub { pp(\@.) }
b

before package X exists
sub X::foo {

pp(\&_)

b

define package
package X;

defined after package X
sub bar {
pp(\E_)
| H

defined after package X
sub herp {

Data: :Dump: :pp(\@_)
I H

pp is available as exported before package X is defined
foo(1..3); #[1, 2, 3]

pp is available as exported before package X is defined
baz(1..3); #[1, 2, 3]

pp is available, but only fully qualified
herp(4..6); # [4, 5, 6]

pp is not available, looks X::pp and fails
#to further resolve

bar(4..6); # Undefined subroutine &X::pp called

Perl capability Provides

More fun: ti1 e

» Totally different, more low level approach

* Allows a perl module to override base operation
of perl data types (scalar, array, hash, file
handle, typeglob)

* Operations on data types (keys, val ues,
spl I ce, etc) are still able to interact with “fied”
variables

* A well known example is Ti e: : | xHash, which
preserves insert-ordering of keys

t1 e — Hash Methods

A class implementing a hash should have the following methods:

TIEHASH classname, LIST
FETCH this, key

STORE this, key, value
DELETE this, key
CLEAR this

EXISTS this, key
FIRSTKEY this

NEXTKEY this, lastkey
SCALAR this

DESTROY this

UNTIE this

1.
i
3.
4.
2.
6.
7.
8.
9.

o~
=

See ‘per| doc perlti e fora mountain of additional information!

Using tie Modules

e t 1 e binds a variable to the custom
implementations of basic operations

* You then program against the variable like you
would natively

 Examples of functionality (See Tie::* on CPAN):

- Hash like interfaces to databases
- File handles that implement content filtering

- Arrays that read and write directly to disk

Extending t | e'd Modules

Modules that implement t | e'd interfaces just like any
other module, they just override specific methods;

They can also be extended like any module (e.g.,
serve as par ent classes)

bl ess works with tied variables!

you can base your Perl class on a blessed data type
that itself can support very interesting behaviors at a
very primitive level (e.g., database or network
connectivity)

Another Twist: Uti | : : H

Carp

Exporter

Hash::Util

Symbol

and possibly others

Name

Util::H20 - Hash to Object: turns hashrefs into objects with accessars for keys

Synopsis
13 CPAN Testers List

use Util::H20; * Reverse dependencies
% Dependency graph

my $hash = h2o { foo = "bar", x => "y" }, gw/ more keys /;

print shash=->foo, "\n"; # accessor

shash-=x("z"}; # change value

shash->more("quz"); # additional keys

my $struct = { hello == { perl == "world!" } };
hZo =recurse, sstruct; # objectify nested hashrefs as well
print $struct->hello-=perl, "\n";

my $obj = hZo -meth, { # code references become methods
what == "beans",
cool => sub {
my $self = shift;
print $self->what, "\n";
}y;
sobj->cool; # prints "beans"

h2o -classify=>"Point', { # whip up a class
angle => sub { my $self = shift; atan2($self->y, $self->x) }
beogw/ xy /3
my $one = Point-=new(x=>1, y=>2);
my $two = Point-=new(x=>3, y=>4);
printf "%.3f\n",; $two—>angle; # prints @.927

Description

This module allows you to turn hashrefs into objects, so that instead of $hash—>{key} you can write $hash->key , plus you get protection from
typos. In addition, options are provided that allow you to whip up really simple classes.

You can still use the hash like a normal hashref as well, as in $hash->{key}, keys %shash , and so on, but note that by default this function also
locks the hash's keyset to prevent typos there too.

This module exports a single function by default.

OOP Perl in 20207

The future is “classic” Perl OOP + “tiny” helper modules (e.g.,
for roles & composition)

Hand crafted packages for most needs

(bj ect : : Ti ny for bigger needs needs

Cl ass: : Accessor if read-only variables are needed
Uti|:: H2OIis very interesting

bl ess'd & t | e'd packages have a lot of potential for many
Interesting uses

Don't use a MOP unless you're building a domain framework
and need to implement a DSL (e.g., Dancer2, Mojo).

Classic Perl OOP Provides for 99%
of Most Needs

« Simple class with package + bl ess

* Basic methods and accessors

 Easy inheritance

* Easy polymorphism

* Well understood idioms for data protection
* Native support for exceptions

« Easy validation/roles/composition is a “Tiny”
CPAN module away

| Don't Have Anything Good to Say
About MOPs

When you know it'll never work but
you keep going back to each other.
o ”fl =

Conclusion

 Perl was OOP before 2001 2000
1999 (probably earlier):

 Conway's book on OOP is
pound for pound the best
general Perl book around even
20 years later

* Reading “the book” will make
you a better Perl programmer
no matter your skill level or
experience.

*I currently have no well founded opinion on Cor

Also see,

« perl oot ut
e perl obj
e« peritie

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

