

Classic Object Oriented Perl

“Object Oriented Perl” Book

● By Damian Conway

● Published in early 2000

● Perl 5.5

● No “MOP” required

● Deep coverage of fundamental Perl

● Shows complete parity of basic OOP
Perl to Smalltalk, Eiffel, Java, and
C++

● No: our, parent, state

Caution: This presentation is a very
poor substitute for “the book”.

Outline

● Intro

● bless

● Lexical closures

● AUTOLOAD

● base.pm

● overload.pm

● tie

● Today's Options

● Summary

Perl “core” has been OOP since
before version 5.6

Similar Parity
Charts in the book
for:

● C++
● Eiffel
● Smalltalk

bless

● Basis of a “constructor”
● Tell's perl that the references is

of a certain class (package) type
● Dereference notation (->) when

to call a method (subroutine) passes the
package name as a string for the first argument.

● Works with any Perl data type (scalar, array,
hash, typeglob, file handle, code ref)*

*Conway covers this extensively

bless – constructor

@ISA

● Fundamental basis of “inheritance”
● parent.pm is favored today,
base.pm was used originally

● Both affect the @ISA array (as in,
this package “is a” (or inherits) from the
specified package

● @ISA is an array, so a package can have an “is
a” relationship with many other packages (don't
do it).

Adding to @ISA

Realistic Example

Output

Driver

Parent class

Child class

Lexical Closures

● Provides basis for data protection (e.g., creating
read-only variables)

● These days, local is common inside of these
● Provided inside of any curly braces constructs:

– subroutines

– control flow (if, while, do, eval, etc)

– bare blocks - { … }

Protecting Variables

Options for Accessors

● Statically defining package subs in
source code

● Handle dynamically using AUTOLOAD
● Define dynamically during code execution

– Can be done with AUTOLOAD lazily (when called
the first time)

– Many CPAN modules exist for this:
Object::Tiny, Class::Accessor, etc

AUTOLOAD???

AUTOLOAD Accessors

Output

Driver

Parent class

Child class

Class::Accessor

● Very easy to use
● Provides “moose-like” data access declarations

(read-write, read-only, etc)
● Close to, but not quite, the “common case” for

most “Perl object” needs

Object::Tiny

● First appeared in 2007
● Book mentions similar modules
● Very similar in nature to Class::Accessor
● In fact, compares itself quite a bit in POD
● Not a perfect “drop in” for C::A, but close
● No data protection attributes

Another Example with Accessors

Output

Driver

Parent class

Child class

overload.pm

● Redefines how perl operators are
handled

● Extremely useful for matching class
semantics with traditional Perl operators

● e.g., consider Math::BigInt, a package that implements “big” integers

As of v5.32.0

Other OOP Things

● Exceptions
– die will happily “throw” a string or a scalar ref

(e.g., exception objection)

● Validation
– Been liking Validate::Tiny a lot

● (next slide)
– Polymorphism

– Roles & Composition (e.g., mixins)

Polymorphism

● One may employ a “prototype” parent class with defined methods that
the subclasses define for real; enforce with die.

Child classParent class

Roles & Composition

● Refers to “mixin” and matching capabilities from
different objects into “roles”

● The domain specific languages (DSL) of Moo,
Moose, etc provide extensive support for this

● I've personally never understood the real need
for roles

Bug or Feature? Yes.

● LanX Observed this
pattern on Perlmonks
recently.

● Hide exported method in
new packages

● Potential to for negatively
composing objects

Use cases for 'sub Pckg::func { }' ?
by LanX (on Jul 30, 2020)
https://perlmonks.org/?node_id=11120095

Recap

Perl capability Provides

package Defines class

base.pm, parent.pm Specifies inheritance

bless Provides constructor

Predefined, generated
(Object::Tiny),
AUTOLOAD

Accessors

Lexical closures, state
(v5.10+)

Data encapsulation

overload.pm operator semantics

More fun: tie

● Totally different, more low level approach
● Allows a perl module to override base operation

of perl data types (scalar, array, hash, file
handle, typeglob)

● Operations on data types (keys, values,
splice, etc) are still able to interact with “tied”
variables

● A well known example is Tie::IxHash, which
preserves insert-ordering of keys

tie – Hash Methods

See `perldoc perltie` for a mountain of additional information!

Using tie Modules

● tie binds a variable to the custom
implementations of basic operations

● You then program against the variable like you
would natively

● Examples of functionality (See Tie::* on CPAN):
– Hash like interfaces to databases

– File handles that implement content filtering

– Arrays that read and write directly to disk

Extending tie'd Modules

● Modules that implement tie'd interfaces just like any
other module, they just override specific methods;

● They can also be extended like any module (e.g.,
serve as parent classes)

● bless works with tied variables!

● you can base your Perl class on a blessed data type
that itself can support very interesting behaviors at a
very primitive level (e.g., database or network
connectivity)

Another Twist: Util::H2O

OOP Perl in 2020?

● The future is “classic” Perl OOP + “tiny” helper modules (e.g.,
for roles & composition)

● Hand crafted packages for most needs

● Object::Tiny for bigger needs needs

● Class::Accessor if read-only variables are needed

● Util::H2O is very interesting

● bless'd & tie'd packages have a lot of potential for many
interesting uses

● Don't use a MOP unless you're building a domain framework
and need to implement a DSL (e.g., Dancer2, Mojo).

Classic Perl OOP Provides for 99%
of Most Needs

● Simple class with package + bless
● Basic methods and accessors
● Easy inheritance
● Easy polymorphism
● Well understood idioms for data protection
● Native support for exceptions
● Easy validation/roles/composition is a “Tiny”

CPAN module away

I Don't Have Anything Good to Say
About MOPs

Conclusion

● Perl was OOP before 2001 2000
1999 (probably earlier):

● Conway's book on OOP is
pound for pound the best
general Perl book around even
20 years later

● Reading “the book” will make
you a better Perl programmer
no matter your skill level or
experience.
*I currently have no well founded opinion on Cor

Fin.

Also see,

● perlootut
● perlobj
● perltie

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

