
  

Classic Object Oriented Perl



  

“Object Oriented Perl” Book

● By Damian Conway

● Published in early 2000

● Perl 5.5

● No “MOP” required

● Deep coverage of fundamental Perl

● Shows complete parity of basic OOP
Perl to Smalltalk, Eiffel, Java, and
C++

● No: our, parent, state

Caution: This presentation is a very
poor substitute for “the book”.



  

Outline

● Intro

● bless 

● Lexical closures

● AUTOLOAD

● base.pm 

● overload.pm 

● tie

● Today's Options

● Summary



  

Perl “core” has been OOP since
before version 5.6

Similar Parity
Charts in the book
for:

● C++
● Eiffel
● Smalltalk



  

bless

● Basis of a “constructor”
● Tell's perl that the references is

of a certain class (package) type
● Dereference notation (->) when

to call a method (subroutine) passes the
package name as a string for the first argument.

● Works with any Perl data type (scalar, array,
hash, typeglob, file handle, code ref)*

*Conway covers this extensively 



  

bless – constructor



  

@ISA

● Fundamental basis of “inheritance”
● parent.pm is favored today,
base.pm was used originally

● Both affect the @ISA array (as in,
this package “is a” (or inherits) from the
specified package

● @ISA is an array, so a package can have an “is
a” relationship with many other packages (don't
do it).



  

Adding to @ISA



  

Realistic Example

Output

Driver

Parent class

Child class



  

Lexical Closures

● Provides basis for data protection (e.g., creating
read-only variables)

● These days,  local is common inside of these
● Provided inside of any curly braces constructs:

– subroutines

– control flow (if, while, do, eval, etc)

– bare blocks - { … }



  

Protecting Variables



  

Options for Accessors

● Statically defining package subs in
source code

● Handle dynamically using AUTOLOAD
● Define dynamically during code execution

– Can be done with AUTOLOAD lazily (when called
the first time)

– Many CPAN modules exist for this:
Object::Tiny, Class::Accessor, etc

AUTOLOAD???



  

AUTOLOAD Accessors

Output

Driver

Parent class

Child class



  

Class::Accessor

● Very easy to use
● Provides “moose-like” data access declarations

(read-write, read-only, etc)
● Close to, but not quite, the “common case” for

most “Perl object” needs



  

Object::Tiny

● First appeared in 2007
● Book mentions similar modules
● Very similar in nature to Class::Accessor
● In fact, compares itself quite a bit in POD
● Not a perfect “drop in” for C::A, but close
● No data protection attributes



  

Another Example with Accessors

Output

Driver

Parent class

Child class



  

overload.pm

● Redefines how perl operators are
handled

● Extremely useful for matching class
semantics with traditional Perl operators

● e.g., consider Math::BigInt, a package that implements “big” integers

As of v5.32.0



  

Other OOP Things

● Exceptions
– die will happily “throw” a string or a scalar ref

(e.g., exception objection)

● Validation
– Been liking Validate::Tiny a lot

● (next slide)
– Polymorphism

– Roles & Composition (e.g., mixins)



  

Polymorphism

● One may employ a “prototype” parent class with defined methods that
the subclasses define for real; enforce with die.

Child classParent class



  

Roles & Composition

● Refers to “mixin” and matching capabilities from
different objects into “roles”

● The domain specific languages (DSL) of Moo,
Moose, etc provide extensive support for this

● I've personally never understood the real need
for roles



  

Bug or Feature? Yes.

● LanX Observed this
pattern on Perlmonks
recently.

● Hide exported method in
new packages

● Potential to for negatively
composing objects

Use cases for 'sub Pckg::func { }' ?
by LanX (on Jul 30, 2020)
https://perlmonks.org/?node_id=11120095



  

Recap

Perl capability Provides

package Defines class

base.pm, parent.pm Specifies inheritance

bless Provides constructor

Predefined, generated
(Object::Tiny),
AUTOLOAD

Accessors

Lexical closures, state 
(v5.10+)

Data encapsulation

overload.pm operator semantics



  

More fun: tie

● Totally different, more low level approach
● Allows a perl module to override base operation

of perl data types (scalar, array, hash, file
handle, typeglob)

● Operations on data types (keys, values,
splice, etc) are still able to interact with “tied”
variables

● A well known example is Tie::IxHash, which
preserves insert-ordering of keys



  

tie – Hash Methods

See `perldoc perltie` for a mountain of additional information!



  

Using tie Modules

● tie binds a variable to the custom
implementations of basic operations

● You then program against the variable like you
would natively

● Examples of functionality (See Tie::* on CPAN):
– Hash like interfaces to databases

– File handles that implement content filtering

– Arrays that read and write directly to disk



  

Extending tie'd Modules

● Modules that implement tie'd interfaces just like any
other module, they just override specific methods;

● They can also be extended like any module (e.g.,
serve as parent classes)

● bless works with tied variables!

● you can base your Perl class on a blessed data type
that itself can support very interesting behaviors at a
very primitive level (e.g., database or network
connectivity)



  

Another Twist: Util::H2O



  

OOP Perl in 2020?

● The future is “classic” Perl OOP + “tiny” helper modules (e.g.,
for roles & composition)

● Hand crafted packages for most needs

● Object::Tiny for bigger needs needs

● Class::Accessor if read-only variables are needed

● Util::H2O is very interesting

● bless'd & tie'd packages have a lot of potential for many
interesting uses

● Don't use a MOP unless you're building a domain framework
and need to implement a DSL (e.g., Dancer2, Mojo).



  

Classic Perl OOP Provides for 99%
of Most Needs

● Simple class with package + bless
● Basic methods and accessors
● Easy inheritance
● Easy polymorphism
● Well understood idioms for data protection
● Native support for exceptions
● Easy validation/roles/composition is a “Tiny”

CPAN module away



  

I Don't Have Anything Good to Say
About MOPs



  

Conclusion

● Perl was OOP before 2001 2000
1999 (probably earlier):

● Conway's book on OOP is
pound for pound the best
general Perl book around even
20 years later

● Reading “the book” will make
you a better Perl programmer
no matter your skill level or
experience.
*I currently have no well founded opinion on Cor



  

Fin.

Also see,

● perlootut 
● perlobj 
● perltie
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