
Mod_Perl
And why I don’t care about your scorn.

By Julian Brown
Developer @ cPanel
Thursday Sept 14th, 2017

When I say mod_perl,
think mod_perl2

It’s about Trade Offs
• I use and prefer to use Mod_Perl in a CGI style setup.

• I believe it is the least overhead per request.

• But the trade off? My full Perl app is built into httpd.

• Hence I am trading memory footprint for perl script
startup time.

• So let’s take a brief look at mod_perl’s other CGI style
cousins.

mod_perl’s cousins are:
• CGI

• FastCGI

• PHP-FPM

I will briefly discuss and diagram each of these.

CGI

Send Request Launches Perl interpreter to process.

As each request comes in, a perl interpreter starts parsing the script and it processes

Works well in a lightly used server.

Apache Worker Pool (you see many :)

Apache

Thread/Process 1

Thread/Process 2

Thread/Process 3

Request 1

Request 2

Request 3

start: perl myapp.cgi

start: perl myapp.cgi

start: perl myapp.cgi

FastCGI
Send Request Receives

Request

Apache Worker Pool (you see many :)

Fast CGI Pool

In this scenario:

• Request comes into Apache pool
• Apache sends request to Fast CGI pool via unix socket
• The Fast CGI pool has already parsed myapp.cgi and is frozen and ready to work
• I do not need to pay the startup cost for myapp.

Apache

Thread/Process 1

Fast CGI Coordinator

myapp.cgi

Thread/Process 2

Thread/Process 3

myapp.cgi

myapp.cgi

Request 1

Request 2

Request 3

PHP-FPM
Apache

Thread/Process 1

PHP-FPM Master Process

Pool Process 1

Thread/Process 2

Thread/Process 3

Pool Process 2

Pool Process 3

FPM stands for FastCGI Process Manager. Hence PHP-FPM is really FastCGI for PHP.
The difference is FPM is built and optimized for PHP, but the benchmark differences
between FastCGI and FPM are minimal.

Request 1

Request 2

Request 3

mod_perl
Send Request Receives

Request

Apache Worker Pool (you see many :)

In this scenario:

• Request comes into Apache pool
• Apache runs MyApp::handler
• Fast CGI is GREAT! but mod_perl has it already.
• No need for second pool.

Apache

Thread/Process 1 - MyApp.pm built in

Thread/Process 2 - MyApp.pm built in

Thread/Process 3 - MyApp.pm built in

Request 1

Request 2

Request 3

Mod Perl Cons
• These apply to FastCGI as well.

• DBH connections can timeout and need to be refreshed
periodically if the instance remains idle long enough. It is fairly
easy to work around though.

• Resources are not necessarily released when I want them gone.
I also need to review global resources to make sure they are
properly managed.

• The instances run for very long times, so if a bug is present that
prevents an the app to continue, this can be catastrophic. With
CGI this is not much of an issue, assuming the first response is
correct.

Cool PHP-FPM Parameters

• In my work with PHP-FPM I love some parameters that they
offer. Some can be done with FastCGI or ModPerl but not all.

• On Demand processing.

• Max Children, defines maximum number of PHP-FPM
processes in the pool.

• Process Idle Timeout, if this pool process is idle this long it
will be reaped.

• Max Requests, maximum number of requests before this
process is recycled, limiting memory leak damage.

mod_perl : The How

Simple to setup and use

- MyApp.pm built i

root@julian-Lubuntu:/etc/apache2/sites-enabled# cat 000-default.conf
<VirtualHost *:80>
 ServerAdmin webmaster@localhost
 DocumentRoot /var/www/html

 ErrorLog ${APACHE_LOG_DIR}/error.log
 CustomLog ${APACHE_LOG_DIR}/access.log combined

 <Location /myapp>
 SetHandler perl-script
 PerlResponseHandler PerlMongers::MyApp
 </Location>
</VirtualHost>

/etc/apache2/sites-enabled/000-default.conf

- MyApp.pm built i

/etc/apache2/apache2.conf at the bottom
/etc/apache2/apache2.conf

Include the virtual host configurations:
IncludeOptional sites-enabled/*.conf

PerlRequire /var/www/perl/startup.pl

use lib qw(/var/www/perl);
1;

/var/www/perl/startup.pl

root@julian-Lubuntu:/var/www# tree perl
perl
├── PerlMongers
│ └── MyApp.pm
└── startup.pl

$scope.openchart_actual = function (chart_num)
{

$scope.mt_chart_tool_message= "loading chart data ...";

console.log ("load");
 $scope.my_chart_tool_message = "Button Pressed";

$http.post('/myapp',
{

DO: 'CHARTTOOL_CHART',
my_chart: chart_num

}).
success(function (data, status, headers, config)
{

console.log ("success");
console.log (data);

 var my_chart = data.my_chart;
 $scope.my_chart_tool_message = "mod_perl returned my_chart :" + my_chart + ":";

}).
error(function (data, status, headers, config)
{

 $scope.my_chart_tool_message = "mod_perl big error :" + data + ":";
});

}

My Angular app POST’s a JSON document instead of the normal ?field=val&field=val
Nothing wrong with the latter, but I prefer JSON.

package PerlMongers::MyApp;

use strict;
use warnings;

use Apache2::RequestRec ();
use Apache2::RequestIO ();
use Apache2::Request ();

use Apache2::Const -compile => qw(OK);

use Data::Dumper;
use JSON;

sub handler {
my $r = shift;

 my $buffer = "";
 my $my_chart = 0;

$r->content_type('application/json');

 if ($ENV{'REQUEST_METHOD'} eq "POST")
 {
 while (<STDIN>)
 {
 $buffer .= $_;
 }

 my $json = JSON->new->allow_nonref;
 my $ref = $json->decode($buffer);

 if (defined $ref && exists $ref->{'my_chart'})
 {
 $my_chart = $ref->{'my_chart'};
 }
 }

 print qq~{
 "my_chart" : $my_chart
}
~;

return Apache2::Const::OK;
}

1;

Note: you could use CGI.pm or some
similar to process the POST.

If you do:

$json_doc = $cgi->param(‘POSTDATA’);

Also Note, you reuse this module
over and over again so if you use
persistent db connections you may
have to refresh them as stale ones
often get disconnected by the db.

Further Research

• I may be wrong but the other Web Frameworks seem to
be based on PSGI/Plack

• So I looked at this page:

• http://plackperl.org/

Servers
Plack (web server adapters)
Plack core includes a CGI runner (for running any PSGI application as a CGI script), a FastCGI daemon and
mod_perl handlers for Apache1 and 2.

So in reality, my focus is on lower level efficient access. The other frameworks
use this concept and build from there. We are not far from each other.

http://search.cpan.org/dist/Plack

